Quotes
在科学上没有平坦的大道,只有那些不畏艰险沿着陡峭山路攀登的人,才有希望达到光辉的顶点。
----马克思
-----------------------------------------------
Research Projects
Collaborations
请有兴趣的研究组联系我们。欢迎任何形式的合作,尤其是在自组装、水凝胶以及生物医药等方向的合作。
------------------------------------------
Publications
Zheng, Y.-Q.; Yao, Z.-F.; Dou, J.-H.; Wang, Y.; Ma, W.; Zou, L.; Nikzard, S.; Li, Q.-Y.; Sun, Z.-H.; Yu, Z.-A.; Zhang, W.-B.; Wang, J.-Y.; Pei, J.* Influence of solution-state aggregation on conjugated polymer crystallization in thin films and microwire crystals. Giant 2021, 7, 100064.
Highly ordered nanostructures assembled from conjugated polymers have great potential for probing fundamental structure-property relationships, as well as boosting the charge transport performance. To date, the effect of solution-state aggregation on crystallization and charge transport in conjugated polymers is still unclear and in need of precise description at the molecular level. In this work, we report a systematic study of solution-state aggregation on crystallization and charge transport in BDOPV-based conjugated polymers through side chain engineering. Detailed analysis of crystal packing structures of conjugated polymers reveals that intermolecular displacements are substantially modified in order to minimize steric hindrance caused by the alkyl side chains. Moreover, subtle differences in side chain chemical structures play a vital role in regulating solution-state aggregation, and thus crystalline domain sizes in both microwires and thin films. Farther branched side chain leads to larger polymer aggregates in solution and therefore larger crystalline domains in solid films. Subsequently, an increase in electron mobility is obtained with the highest mobility values surpassing 10 cm2 V−1 s−1. This work unravels that the modification of the side chains is an efficient strategy for fine-tuning the interchain organization of conjugated polymers from solution to solid state.