Quotes
----------------------------------------------
-----------------------------------------------
在科学上没有平坦的大道,只有那些不畏艰险沿着陡峭山路攀登的人,才有希望达到光辉的顶点。
----马克思
-----------------------------------------------
Research Projects
Collaborations
------------------------------------------
请有兴趣的研究组联系我们。欢迎任何形式的合作,尤其是在自组装、水凝胶以及生物医药等方向的合作。
------------------------------------------
请有兴趣的研究组联系我们。欢迎任何形式的合作,尤其是在自组装、水凝胶以及生物医药等方向的合作。
------------------------------------------
Publications
38. Sequential Triple “Click” Approach toward Polyhedral Oligomeric Silsesquioxane-Based Multiheaded and Multitailed Giant Surfactants. ACS Macro Lett. 2013, 2, 645-650
Posted on:2016-04-27
Su, H.; Zheng, J.; Wang, Z.; Lin, F.; Feng, X.; Dong, X.-H.; Becker, M. L.; Cheng, S. Z. D.;* Zhang, W.-B.;* Li, Y.* Sequential Triple “Click” Approach toward Polyhedral Oligomeric Silsesquioxane-Based Multiheaded and Multitailed Giant Surfactants. ACS Macro Lett. 2013, 2, 645-650. [Link] [PDF]
Abstract
This letter reports a sequential triple “click” chemistry method for the precise synthesis of functional polyhedral oligomeric silsesquioxane (POSS)-based multiheaded and multitailed giant surfactants. A vinyl POSS-based heterobifunctional building block possessing two alkyne groups of distinct reactivity was used as a robust and powerful “clickable” precursor for ready access to a variety of POSS-based shape amphiphiles with complex architectures. The synthetic approach involves sequentially performed strain-promoted azide–alkyne cycloaddition (SPAAC), copper-catalyzed azide–alkyne cycloaddition (CuAAC), and thiol–ene “click” coupling (TECC). Specifically, the first SPAAC reaction was found to be highly selective with no complications from the vinyl groups and terminal alkynes in the precursor. The method expands the toolbox of sequential “click” approaches and broadens the scope of synthetically available giant surfactants for further study on structure–property relationships.
This letter reports a sequential triple “click” chemistry method for the precise synthesis of functional polyhedral oligomeric silsesquioxane (POSS)-based multiheaded and multitailed giant surfactants. A vinyl POSS-based heterobifunctional building block possessing two alkyne groups of distinct reactivity was used as a robust and powerful “clickable” precursor for ready access to a variety of POSS-based shape amphiphiles with complex architectures. The synthetic approach involves sequentially performed strain-promoted azide–alkyne cycloaddition (SPAAC), copper-catalyzed azide–alkyne cycloaddition (CuAAC), and thiol–ene “click” coupling (TECC). Specifically, the first SPAAC reaction was found to be highly selective with no complications from the vinyl groups and terminal alkynes in the precursor. The method expands the toolbox of sequential “click” approaches and broadens the scope of synthetically available giant surfactants for further study on structure–property relationships.