箴言
在科学上没有平坦的大道,只有那些不畏艰险沿着陡峭山路攀登的人,才有希望达到光辉的顶点。
----马克思
-----------------------------------------------
合作研究
请有兴趣的研究组联系我们。欢迎任何形式的合作,尤其是在自组装、水凝胶以及生物医药等方向的合作。
------------------------------------------
研究成果
Abstract
Dipole induced vacuum level shift has been demonstrated to be responsible for the enhanced efficiency in polymer solar cells (PSCs).The modified energy level alignment could reduce the energy barrier and facilitate charge transport, thereby increasing the efficiency of PSCs. Herein, we report a new mechanism toward enhanced efficiency by using a nondipolar water/alcohol-soluble neutral fullerene derivative to reengineer the surface of the zinc oxide (ZnO) electron extraction layer (EEL) in inverted PSCs. Because of the neutral property (ion-free) of the fullerene derivatives, no dipole moment was introduced at the EEL/active layer interface. A negligible change in open-circuit voltage was observed from inverted PSCs with the neutral fullerene derivative layer. The neutral fullerene derivative layer greatly increased the surface electronic conductivity of the ZnO EEL, suppressed surface charge recombination, and increased the short-circuit current density and fill factor. An overall power conversion efficiency increase of more than 30% from inverted PSCs was obtained. These results demonstrate that the surface electronic conductivity of the EEL plays an important role in high performance inverted PSCs.